If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.2x^2+x-450=0
a = 0.2; b = 1; c = -450;
Δ = b2-4ac
Δ = 12-4·0.2·(-450)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*0.2}=\frac{-20}{0.4} =-50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*0.2}=\frac{18}{0.4} =45 $
| 4(2x-3)=-9 | | 3(2x+1)-2x(-2)=5 | | 2/5x+5/2=5/6x+1/6 | | 3(2x+3)–1–4x=4 | | -14x+4(2x-3)=-14-5x | | 3(x-8)=3x-6 | | 5x−14x+4(2x−3)=−14−5x | | 3x^2+8)2=60 | | 3x2+8)2=60 | | 8=e/9 | | 4r=92 | | 250=5w | | 625^(2x+2)=25 | | (26+5x)+x=180 | | 108-x=180 | | 20p-28=20 | | 4a+3÷8+3=15a+29÷32 | | 5(19-x)=x+5 | | ((x+3))/(4)=(3x)/(6)+7 | | 100=y/1.08 | | 3xX11x=1188 | | 5(19-x)=(x+5) | | 5x-95=-2x+157 | | 5×(19-x)=(x+5) | | 6y+10=y²+3y | | x+1/7=1 | | 9h+24=66 | | 6x-8x+9=x-3+12 | | 31=4(x)+5(x)+34 | | 564÷x=141 | | 3z(2z+11)=63 | | 200+50x=150x |